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INDENTED PLATE PROBLEM REVISITED 
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SUMMARY 

An interactive boundary layer method, together with the en approach to the calculation of transition, has 
been used to investigate the flow over an indented surface for which previous calculations had led to 
numerical instabilities. The results show two possible reasons for these numerical difficulties. First, it is 
shown that the gradients of wall shear become very steep at larger Reynolds numbers, particularly in the 
vicinity of reattachment. Extremely fine numerical grids are required to resolve these gradients. Secondly, 
and perhaps of greater importance, transition is shown to occur within the region of recirculation for all 
Reynolds numbers except for the lowest ones. Thus, the calculated flows downstream of the transition 
locations are fictitious and may be expected to deviate from the corresponding real flows by increasing 
amounts as the Reynolds number becomes larger. Calculations involving laminar, transitional and turbulent 
flow have been performed and confirm this conjecture. 
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1. INTRODUCTION 

It is well known that the laminar boundary layer equations can be solved for a prescribed 
pressure distribution as long as the flow remains attached and their solutions are independent of 
the Reynolds number. At the location of flow separation, defined to correspond to the vanishing 
of wall shear in steady flows, the solutions break down and this situation is sometimes referred to 
as the singular behaviour of the boundary layer equations at separation. There are no real 
solutions downstream of separation; the normal velocity component u becomes infinite at the 
separation point, x, and, near x,, the behaviour of the wall shear z, is of the form 

The boundary layer equations are not singular at separation, however, when the external 
velocity or pressure is computed as part of the solution. Catherall and Mangler' were the first to 
show that modifications of the external velocity distribution near the region of flow separation 
leads to solutions free of numerical difficulties. Prescribing the displacement thickness as 
a boundary condition, that is, 
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in addition to the usual boundary conditions used to solve the boundary layer equations for 
a prescribed pressure distribution, they were able to integrate the boundary layer equations 
through the separation location and into a region of reverse flow without any evidence of 
a singular point. Their study has led to other studies by various  investigator^,^-^ in which the 
solutions of the boundary layer equations were obtained for flows with and without separation by 
prescribing either displacement thickness or wall shear distributions. This technique, which is 
known as an inverse method, has also been used to develop numerical methods to solve the 
boundary layer equations with large regions of flow separation for a range of Reynolds num- 
b e r ~ . ~ . "  These studies considered laminar flows, and the question of whether the flows at  these 
relatively high Reynolds numbers exist was not addressed. 

Another inverse method designed to couple the solutions of the inviscid flow and boundary 
layer equations is the Hilbert integral procedure, proposed by Veldman. In this approach, the 
value of external velocity u,(x) is written as the sum of the inviscid velocity, u:(x), and a 
perturbation velocity, Su,(x), to account for the viscous effects, that is, 

udx) = u , " ( 4  +6ue(x) ,  (3) 

with cSu,(x) computed from the so-called Hilbert integral 

X-CT 
(4) 

where the interaction region is confined to (x,, x,,). For a specified u:(x) and Reynolds number, the 
boundary layer equations are solved in the inverse mode simultaneously in successive sweeps over 
the given body until the solutions converge. 

The Hilbert integral approach provides a relationship between external velocity u,(x) and 
displacement thickness 6 *(x) and is similar to the specified displacement thickness approach 
indicated by equation (2), which also provides such a relationship. Howeker, there is an imporant 
difference in that, for the specified 6*-case, the solutions of the boundary layer equations are 
obtained for one sweep on the body in contrast to the Hilbert integral approach which requires 
several sweeps. Since the solutions of the laminar boundary layer equations with separation 
depend on the Reynolds number, the Hilbert integral approach allows us to examine the 
behaviour of the solutions at each sweep and their approach to convergence. Typical useful 
studies include flows with large flow separation and their associated numerical difficulties and the 
accuracy and the convergence of the solutions at the reattachment point if the flow separates and 
reattaches. An approach based on the displacement thickness, which is not as versatile as the 
Hilbert integral approach. can provide most of this useful information but does not address the 
question of the convergence of the solutions at the reattachment point. It is also possible that this 
approach may not signal difficulties in achieving the solutions since the calculations do not bring 
in the downstream effects. The Hilbert integral approach, on the other hand, can signal potential 
difficulties since sweeps on the body bring the downstream effects into the calculations. The 
difficulties may be numerical or physical and their identification may not be an easy task. 

In this paper, we consider a flow investigated by Henkes and Veldman'' and speculate on the 
reasons for the difficulties observed in obtaining laminar flow solutions over the indented plate 
shown in Figure 1. The shape of the indented plate is given by 

ywz = - 0.03 sech4( - 2 3 ,  ( 2 0. 

The problem was originally addressed by Carter and Wornom," who presented solutions at 
a Reynolds number, R=8 x lo4, over the interval 1 I c I 4 .  Veldman13 solved the problem at 
a Reynolds number of R = 3.6 x lo', but could not obtain converged solutions for larger Reynolds 
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Figure 1 .  Indented plate problem 

numbers. Both investigations used interactive boundary layer equations. A further attempt was 
made by Veldman and Di jk~ t ra , ’~  who treated the problem in a triple-deck framework and 
encountered difficulties at Reynolds numbers slightly above 3.60 x 1 05 .  Careful iteration, using 
results at smaller Reynolds numbers as initial guesses, did not lead to success. Thus, two different 
steady descriptions of the flow problem experienced difficulties in almost the same situation. 
Henkes and Veldman stated that ‘this gave the impression that something fundamental was going 
on: perhaps a steady solution does not exist at these large Reynolds numbers’. 

Recently, Edwards and Carter’ were able to calculate a steady solution at R = 6 x lo5 using 
a first-order scheme and neglecting the convective term in the x-direction in regions with 
backflow (FLARE approximation). Henkes and Veldman” also conducted studies at this 
Reynolds number with first-order solutions at R = 6 x lo5 as an initial guess, and stated that, ‘it 
appeared possible to obtain the steady solution with a second-order scheme, without neglect of 
any terms, at this Reynolds number’. They also stated that solutions at larger Reynolds numbers 
could be obtained only by following an unsteady approach, starting from the steady solution at 
R=6 x lo5; the steady solution at R =  1.5 x 10‘ was reached by increasing the Reynolds number 
as 

R(t )=R,- (R ,  -Ro)  sech(r), (6)  
with Ro=6 x lo5, R I  = 1.5 x 10‘. 

As a rule, three sweeps were made at each time level. The almost steady solution on the 61 x 41 
spatial grid at t=8.0, after 75 time steps, was used to initiate a calculation with the steady 
equations for R = 1.5 x 10’ and an additional 58 sweeps were required to satisfy the criterion that 
the maximum norm of changes in u,d* was below At R = 1.5 x lo6, the 61 x 41 numerical 
grid resolved some of the details of the free-shear layer, and the wall shear stress of 
Figurc 2 already shows some ‘wiggles’ between 4 = 2.0 and 2.5, caused by a lack of resolution. 
Larger Reynolds numbers would require a finer grid, with increased computational cost. 

Based on the above study, Henkes and Veldman concluded that ‘at this depth of the 
indentation, the interacting boundary layer equations do have a steady solution at arbitrarily 
large Reynolds numbers. The difficulties encountered in the previous investigations seem to be of 
a numerical nature’. 

More recently, Rubin and Himansu16 examined the convergence properties of an iterative 
solution technique for the reduced Navier -Stokes equations for this flow. Techniques for 
decreasing the sensitivity to the initial pressure approximation, for fine meshes in particular, were 
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Figure 2. Wall shear stress of steady interacting boundary layer solution along an indented plate 

investigated. Sufficient spatial grid refinement led to a shock-like attachment and, for sufficiently 
large Reynolds number, to a local ‘divergence’ of the numerical computations. Rubin and 
Himansu stated that this ‘laminar flow breakdown’ appeared to be related to an instability that is 
associated with high-frequency fine-grid modes that were not resolvable with their modelling. 
They conjectured that this behaviour might be indicative of dynamic stall or of incipient 
transition and that the instability was of a physical, rather than of a numerical, character. 

In the present study, we examine the veracity of their conclusion at these high Reynolds 
numbers in the light of a recent study on laminar separation bubbles conducted by CebeciI7 for 
a different problem but for a similar reason: Do the solutions of laminar boundary layer 
equations exist at high Reynolds numbers in the presence of separation and do the observed 
numerical instabilities have their origin elsewhere than in the numerical solution method? To 
elaborate on this point, it is useful to review Cebeci’s study conducted for a leading edge of a thin 
ellipse at a reduced incidence angle of 5 0 .  The study used the interaction formula provided by 
equations (3) and (4) and showed that the laminar boundary layer near the leading edge behaved 
well for R = lo5, and was unseparated if the reduced incidence angle (0 is less than ts= 1.275, 
although there was a significant adverse pressure gradient. At higher values of to, however, 
separation occurred and increased in its extent with increasing values of to. For to up to 1.294, 
the solutions in the separated region behaved well, exhibited no numerical problems and the 
extent of the separation bubble which changed slowly with each sweep for a specified value of to, 
settled down after around 10 sweeps. The location of separation and the reattachment point 
remained constant with additional sweeps and the solutions indicated complete convergence in 
the entire flow field. When the same calculations were repeated for to = 1.296, however, the extent 
of the separation bubble began to grow with iteration and even though the loation of the onset of 
separation location remained essentially the same at each sweep, the reattachment point began to 
drift slowly with the number of sweeps. When calculations were repeated for (0 = 1.298, the results 
exhibited a similar behaviour as for to = 1.296 except that the drift in the reattachment location 
was more pronounced with sweep number. In both cases, however, there were no numerical 
problems and the inverse method was able to deal with increasing regions of flow separation until 
the separation bubble became so large that the reattachment point coincided with the end of the 
plate. At that point, the calculations had to be terminated since the solution of the Hilbert integral 
required downstream boundary conditions. 

Possible reasons for the behaviour of the numerical instability in the calculation of the 
separation bubble was investigated by using the en-method based on the linear stability theory. 
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The computed transition locations obtained for values of reduced incidence to up to 1.296 
showed that transition moved forward with increasing to, with transition occurring almost at  the 
reattachment point for to = 1.290 and moving inside the separation bubble at higher values of to. 
While for to < 1.296, the reattachment location of the separation bubble and the location of the 
onset of transition remained constant with the number of sweeps and the solutions converged: for 
to 2 1.296, the extent of the separation bubble began to increase with the number of sweeps and 
caused the onset of transition to move upstream with each sweep. These results implied that the 
real flow was turbulent and had a shorter recirculation region, which was consistent with 
experiments and with the study of Cebeci and Schimkel' and Cebeci," who, in the calculation of 
long separation bubbles on aerofoils, observed a similar numerical instability and stated that 
reattachment and transition locations were related. Attempts to perform calculations with 
transition locations further downstream than those reported experimentally revealed a similar 
tendency for the reattachment location to move downstream with the number of sweeps used in 
the interactive procedure. 

In the present study, in Section 2. we present results obtained with a calculation method based 
on a combination of an interactive boundary layer and stability-transition approach for the 
indented plate problem at low and high Reynolds numbers and conjecture on the conclusions 
reached by Henkes and Veldman" and Rubin and his c o - w ~ r k e r s ' ~ ~ ~ ~ ~ ~ '  in the light of Cebeci's 
study." The paper ends with a summary of the more important findings. 

2. RESULTS AND DISCUSSION 

The calculation method involves an interactive boundary layer method (IBL) and a transition 
prediction method based on the en method described by Cebeci.lg The interactive method is 
based on the solution of the continuity and momentum equations for a two-dimensional 
incompressible flow, together with a Hilbert integral formulation which couples the boundary 
layer solutions to inviscid flow solutions appropriate to the indentation given by equation (5). It 
has been used in the calculation of many flows, so that its numerical features are known to be 
reliable and accurate. Where calculations were performed in regions of transitional and turbulent 
flow, the eddy viscosity formulation of Cebeci and Smith22 was used and, agqin, is known from 
extensive examinations to be reliable.23 

The results are presented in three sections. The first is concerned with the nature of the laminar 
flow solutions in the separated flow region and the extent to which they are influenced by 
Reynolds number and numerical grid resolution. The second is concerned with the determination 
of the location of the onset of transition, and of the extent to which this may obviate the need to 
deal with the first problem. In this case, the interactive scheme is used in conjunction with the en 
method. The third is concerned with laminar, transitional and turbulent flows and the extent to 
which they are influenced by the Reynolds number and the location of transition. 

2.1. Interacfice flow cahiutions 

Results have been obtained for Reynolds numbers of 8 x lo4, 2 x lo', 3% x lo', 5 x lo5 and 
6 x lo5 and are presented here in the form of the variation of wall shear parameter f :  with 
distance <. In each case, a series of calculations was performed to show the influence of grid 
resolution and the number of sweeps required for convergence. 

Figure 3 shows the results for the lowest Reynolds number. In this case, 50 uniformly 
distributed t-stations in the interval 1 5 5 < 4  yielded results identical to those obtained with 100 
and 200 t-stations. Also, convergence was achieved after 25 sweeps. Figure 3 shows that the wall 
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(c)  

Figure 3.  Variation of dimensionless wall shear parameter. R, = 8 x lo4: (a) N X  = 5 0  (b) N X  = 100; (c) N X  = 200 

(a)  (b)  

Figure 4. Variation of dimensionless wall shear parameler, N X  -200: (a) R,=2 x 10'; (b) R,=3.6 x lo5 

shear decreases through separation to a minimum value, after which it increases gradually to zero 
at reattachment and continues to a maximum positive value before decreasing again to its 
asymptotic flat plate result. 

At a Reynolds number of 2 x lo5, calculations with 50 and 100 (-stations produced slight 
oscillations in the solutions and 200 uniformly distributed (-stations were required. Convergence 
was obtained after 40 sweeps. The results of Figure 4(a) show the variation of the wall shear 
parameter and that the gradients, particularly after the minimum value, are noticeably steeper 
than those of Figure 3(c). Figure 4(b) corresponds to a Reynolds number of 3.6 x lo5 and it can be 
seen that the minimum value 0f.f; has moved downstream so that the gradients have become 
even more steep but are still able to be represented by 200 <-stations with convergence after 50 
sweeps2" At a Reynolds number of 5 x lo5, calculations show that the gradient of wall shear at 
the reattachment location is appreciably steeper and increases with each sweep. At sweep 32, the 
minimum and maximum values off; occur at  neighbouring grid locations and the sudden change 
in f ; from a negative value to a iarge positive value causes the solutions to oscillate at subsequent 
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grid points. These oscillations progressively influenced the results of subsequent sweeps until the 
solutions broke down at a sweep number of 37. A closer look at the variation of the wall shear 
parameter24 indicates that the solutions begin to oscillate at the 17th sweep. At the highest 
Reynolds number of 6 x lo5, the situation was similar to that at 5 x 10' except that the minimum 
and maximum values off I: were achieved at neighbouring grid locations after only 20 sweeps, 
with consequent breakdown shortly thereafter. In this case, solutions began to exhibit oscillations 
after 13 sweeps, during which the reattachment point changed slowly. 

These results show that the gradient off: at the reattachment point achieves a near-infinite 
value at a Reynolds number greater than 5 x 10'. This gradient can certainly berepresented with a 
local increase of grid points but it can equally be expected that the subsequent oscillations will 
remain even with this increased cost of calculation. I t  seems, from a physical viewpoint, that this 
gradient is unreasonable; having shown the influence of Reynolds number, number of <-stations 
and sweeps, we now turn to examine the second possibility, namely, that of a flow which undergoes 
transition as a consequence of the region of separation. 

2.2. Stahilitv transition calculations 

A summary of the calculated values of the locations of laminar separation and transition is 
given in Table I. The location of the reattachment is also shown but it should be remembered that 
this corresponds to a laminar flow even though we have determined that, except at a Reynolds 
number of 8 x lo4, the onset of transition occurs either within or ahead of the separation bubble. 
These results, which are shown in Figure 5 ,  were obtained with the e" method, which led to the 
integrated amplification rates as a function of frequency and for the five values of Reynolds 
number shown in Table I. 

The table shows that the lowest Reynolds number flow does not undergo transition over the 
5-distance considered. Thus, we have a laminar separation followed by a laminar reattachment 
and no difficulties with the numerical calculations. At a Reynolds number of 2 x lo', the 
calculations indicate that the onset of transition occurs upstream of the minimum value of the 
wall shear parameter, so that a substantial part of the calculated result off;  in Figure 5(b) 
corresponds to a laminar flow which may not be able to exist. The same pattern is evident at 
higher Reynolds numbers, where it is increasingly difficult to be certain that the correct value of 
?I has been chosen. The results shown in Table I were obtained for a value of n=9, but lower 
values of n could lead to the occurrence of transition at or before the laminar separation location. 
Thus, it is reasonable to expect increasing numerical difficulties with the calculations of laminar 
flows which may not exist in practice and which correspond to larger regions of the flows 
considered here as thc Reynolds number is increased. 

Table I. Separation, reattachment, and transition location for laminar flow 
over an indented plate 

Separation Reattachment Transition 
Ro location location location 

8 x  lo4 
2 x  105 

3.6 x 10' 

6 x  10' 
5 x 105 

2.24 264 - 

2.16 2.72 2.24 
2.14 2.76 2.15 
2.12 2.78 2.12 
2.12 2-80 2.10 
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In spite of the near concurrence of laminar separation and transition for three of the cases of 
Table I, we can expect that the consequent turbulence effects will increase in importance with 
Reynolds number. This implies that the higher the Reynolds number, the more fictitious the 
laminar result will be and deviate from that which will occur in practice. 

lo 8 -  r 

n 

-0.d 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 

(B) 

L 
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Variations of the (A) the dimensionless wall shear parameter, and (B) the dimensionless velocity profiles in the 
separation region: (a) R ,  = 8 x lo4; (b) R ,  =2  x lo5; (c) R ,  = 3.6 x lo5; (d) R ,  = 5  x lo5; (e) R, = 6 x lo5 
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Figure 5. (Continued) 

Table TI. Separation, reattachment, and transition location for transitional and 
turbulent flow over an indented plate 

Separation Reattachment Transition 
location location location 

2 x 10s 

5 x  105 
6 x 10’ 

3.6 x 105 
2.20 2.64 2.50 
2.18 2.54 2.38 
2.20 2.48 2.36 
2.22 2.44 2.30 

2.3. Turbulent $ow culculations 

The conjecture of the previous section was tested by performing calculations which involved 
the transitional and turbulence model and sweeps were necessary to ensure that upstream effects 
of the transitional and turbulent flows were properly represented. 

Calculations of this type were performed and a sample of the results is shown in Figure 6. The 
resulting transition locations are shown in Table I1 and it is clear that they deviate increasingly 
from those of Table I as the Reynolds number was increased by comparatively small amounts. 
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Figure 6. Variation of the dimensionless wall shear parameter for transitional~turbulent flow: (a) R , = 2  x lo5; 

(b) K, = 3.6 x lo5; (c) KO = 5 x lo5; (d) X, = 6 x lo5 

Figure 6 shows the variations of the wall shear and that the length of the separation bubble 
becomes much shorter than those shown in Figure 5 corresponding to the laminar flows at the 
same Reynolds number. Further comparison of the two sets of figures confirms the conjecture that 
the differences between laminar and transitional-turbulent flows increase with Reynolds number. 

The calculations which led to Figure 6(a)-6(d) were performed without numerical problems 
and we can reasonably expect that calculations of this type can be performed at much higher 
Reynolds numbers. 

3. CONCLUDING REMARKS 

It is evident that two aspects of the calculations discussed in the previous three subsections may 
each contribute to numerical difficulties such as those experienced by Henkes and Veldman.12 As 
the Reynolds numbers are increased, the recovery of the wall shear parameter becomes more 
rapid and achieves gradients which present problems particularly around the location of laminar 
reattachment. Here we have investigated the effect of step length and have shown that, consistent 
with the study of Rubin and his co-workers,'6,20,21 very fine grids would be required to resolve 
the gradients at higher Reynolds numbers. Thus, numerical accuracy does contribute to the 
breakdown of the solutions. At the same time, again consistent with the study of Rubin and 
Himansu,I6 it is clear that these breakdowns occur for laminar flows which may never exist. Our 
calculations have shown that the onset of transition occurs within the recirculation region for the 
four Reynolds numbers considered. As a consequence, we should expect that the influence of 
turbulent fluctuations would be present after the transition location and would increase with 
Reynolds number so that, at higher Reynolds numbers, we might expect that the laminar flows 
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calculated downstream of transition would deviate considerably from those which would exist in 
practice. Calculations involving laminar, transitional and turbulent flows have been performed 
over a more extensive Reynolds number range than those for laminar flow and confirm this 
conjecture. The results were obtained without any sign of numerical instability and with step 
lengths which were modest. 
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